Uniform regularity results for critical and subcritical surface energies
نویسندگان
چکیده
منابع مشابه
On the global regularity of subcritical
We prove that the one-dimensional Euler–Poisson system driven by the Poisson forcing together with the usual γ -law pressure, γ ≥ 1, admits global solutions for a large class of initial data. Thus, the Poisson forcing regularizes the generic finite-time breakdown in the 2×2 p-system. Global regularity is shown to depend on whether or not the initial configuration of the Riemann invariants and d...
متن کاملUniform asymptotic regularity for Mann iterates
In [16] we obtained an effective quantitative analysis of a theorem due to Borwein, Reich and Shafrir on the asymptotic behavior of general KrasnoselskiMann iterations for nonexpansive self-mappings of convex sets C in arbitrary normed spaces. We used this result to obtain a new strong uniform version of Ishikawa’s theorem for bounded C. In this paper we give a qualitative improvement of our re...
متن کاملRegularity Lemma for k-uniform hypergraphs
Szemerédi’s Regularity Lemma proved to be a very powerful tool in extremal graph theory with a large number of applications. Chung [Regularity lemmas for hypergraphs and quasi-randomness, Random Structures and Algorithms 2 (1991), 241–252], Frankl and Rödl [The uniformity lemma for hypergraphs, Graphs and Combinatorics 8 (1992), 309–312, Extremal problems on set systems, Random Structures and A...
متن کاملUniform Regularity and Vanishing Viscosity Limit for the Free Surface Navier-stokes Equations
We study the inviscid limit of the free boundary Navier-Stokes equations. We prove the existence of solutions on a uniform time interval by using a suitable functional framework based on Sobolev conormal spaces. This allows us to use a strong compactness argument to justify the inviscid limit. Our approach does not rely on the justification of asymptotic expansions. In particular, we get a new ...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Calculus of Variations and Partial Differential Equations
سال: 2018
ISSN: 0944-2669,1432-0835
DOI: 10.1007/s00526-018-1457-0